Acta Cryst. (1995). C51, 2033-2035

(Bromodichloromethyl)phenylmercury

Robert E. Bachman, Bob R. Maughon, Dianne J.
McCord, Kenton H. Whitmire and W. E. Blllups
Chemistry Department, Rice University, PO Box 1892, Houston, Texas 77251, USA

(Received 7 June 1994; accepted 18 August 1994)

Abstract

$\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CBrCl}_{2}\right)\right]$ exists as a dimer in the solid state through weak Lewis acid-base interactions between the the mercury centers and the halogen atoms. However, these interactions are too weak to significantly perturb the $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ angles [178.3(6) and $179.5(6)^{\circ}$].

\section*{Comment}

Relatively few organomercury compounds have been characterized to date. Furthermore, most of the examples reported in the literature are Lewis base adducts rather than free compounds. Though it is only of moderate thermal stability, (bromodichloromethyl)phenylmercury, (I), crystallizes easily even in the absence of a Lewis base. Interestingly, even in this case the mercury center still possesses weak Lewis acid character in the solid state. This acidic nature of the metal center results in the formation of a dimer via mercury-halogen interactions.

(I)

As expected for a mercury(II) center bound by two ligands, the coordination geometry is approximately linear with $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ angles of 178.3 (6) and $179.5(6)^{\circ}$. The observed intramolecular bond distances are consistent with those previously reported. The $\mathrm{Hg}-\mathrm{C}$ (phenyl) bond distances are $2.048(15)$ and $2.046(14) \AA$, compared with $2.096(16) \AA$ in $\left(\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{H}\right)_{2} \mathrm{Hg}$ (Brown, Massey \& Wickens, 1980) and $2.062 \AA$ (average) in $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{HgCl}_{2}\right.$. $\left[\mathrm{Ph}_{4} \mathrm{P}\right] \mathrm{Cl}$ (Beauchamp, Oliver, Wuest \& Zcharie, 1986). The $\mathrm{Hg}-\mathrm{C}($ alkyl $)$ distances are $2.136(15)$ and $2.12(2) \AA$ versus $2.110(10)$ and $2.121(14) \AA$, respectively, in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{HgCl})_{2} \mathrm{C}$ $\left(\mathrm{OCH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ (Bassetti \& Bocelli, 1990), 2.067 (22) and $2.042(23) \AA$ in $\left[\mathrm{Ph}_{4} \mathrm{P}\right] \mathrm{Cl} . \mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}$ (Korpar-Colig, Popovic, Bruvo \& Vickovic, 1988), and 2.10 (6) \AA in 2 -(chloromercurio)-3-acetoxybicyclo[2.2.1]heptane (Halfpenny, Small \& Thorpe, 1978).

The two independent Hg atoms make intermolecular contacts with a halide atom on the adjacent molecule
forming a loose halogen-bridged dimer in the solid state. The six-membered ring formed by these interactions adopts a chair-like conformation with the phenyl rings occupying equatorial positions. These weak bridging distances are $3.468(3) \AA(\mathrm{Hg} 1 \cdots X 22)$ and $3.516(4) \AA$ ($\mathrm{Hg} 2 \cdots X 11$). These distances are significantly longer than those found in $\left[\mathrm{Ph}_{4} \mathrm{P}\right] \mathrm{Cl} . \mathrm{Hg}\left(\mathrm{CF}_{3}\right)_{2}$ [2.823 (3) and 2.837 (4) Å] (Korpar-Colig, Popovic, Bruvo \& Vickovic, 1988) but comparable with the longest contacts found in $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathrm{HgCl})_{2} .\left[\mathrm{Ph}_{4} \mathrm{P}\right] \mathrm{Cl}$ [3.266(4)3.591 (5) Å] (Beauchamp, Oliver, Wuest \& Zcharie, 1986). Furthermore, these contacts are about the same length as the sum of the van der Walls radii for Hg and $\mathrm{Cl}(3.4 \AA)$ and approximately $0.1 \AA$ shorter than that of Hg and $\mathrm{Br}(3.6 \AA$) (Huheey, 1983).

Fig. 1. View of the two independent $\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CBrCl}_{2}\right)\right]$ molecules showing the labelling of the non- H atoms and the intermolecular mercury-halogen interactions. Displacement ellipsoids are shown at 50% probability levels; H atoms are drawn as small circles of arbitrary radii.

Experimental

The title compound was obtained as described by Seyferth and co-workers (Seyferth, Jula, Hadwig \& Pereyre, 1967; Seyferth \& Lambert, 1969).

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CBrCl}_{2}\right)\right]$
$M_{r}=440.51$
Monoclinic
$P 2_{1} / c$
$a=9.426(2) \AA$
$b=17.744$ (4) \AA
$c=12.137(2) \AA$
$\beta=102.04(3)^{\circ}$
$V=1985.3(7) \AA^{3}$
$Z=8$
$D_{x}=2.948 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Rigaku AFC-5S diffractom- $\quad R_{\text {int }}=0.0475$
eter

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=6.93-16.55^{\circ}$
$\mu=20.003 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$
Colorless
ω scans
Absorption correction:
ψ scan
$T_{\min }=0.7679, T_{\max }=$
1.000
3677 measured reflections

3677 measured reflections
3452 independent reflections
1988 observed reflections

$$
[I>2 \sigma(I)]
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0467$
$w R\left(F^{2}\right)=0.0738$
$S=1.099$
3436 reflections
206 parameters
H atoms calculated with riding model
$w=1 / \sigma^{2}\left(F_{o}^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.893 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.186 \mathrm{e}^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

The halogen atoms were disordered and modeled as composite atoms of Br and Cl . The Br and Cl compositions were constrained to equal 1 at each location and the total Br occupancy for all three halogen sites on an individual methyl group was constrained to also sum to unity. The Br occupancies at each site refined to the following values: $X 11,21 ; X 12,49 ; X 13,30 ; X 21,18 ; X 22,35 ; X 23,47 \% . U_{\text {eq }}=$ $(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$

	x	y	z	$U_{\text {eq }}$
Hg1	0.04942 (7)	0.59406 (3)	0.17142 (5)	0.0452 (2)
X11	-0.1667 (4)	0.4944 (2)	0.2942 (2)	0.0614 (14)
$X 12$	-0.2892 (3)	0.53229 (14)	0.0567 (2)	0.0750 (12)
X13	-0.0459 (3)	0.41908 (15)	0.1166 (2)	0.0573 (11)
C1	-0.1147 (17)	0.5097 (8)	0.1597 (11)	0.050 (4)
C11	0.2105 (16)	0.6727 (8)	0.1808 (12)	0.044 (4)
C12	0.3073 (19)	0.6669 (10)	0.1142 (13)	0.068 (5)
C13	0.4178 (18)	0.7182 (11)	0.1202 (13)	0.065 (5)
C14	0.4310 (18)	0.7794 (10)	0.1941 (14)	0.067 (5)
C15	0.3350 (19)	0.7841 (9)	0.2629 (14)	0.065 (5)
C16	0.2232 (17)	0.7332 (9)	0.2538 (12)	0.055 (4)
Hg 2	-0.38088 (7)	0.63560 (3)	0.38131 (5)	0.0492 (2)
X21	-0.2401 (4)	0.7988 (2)	0.4525 (2)	0.0615 (14)
X22	-0.1753 (3)	0.7313 (2)	0.2457 (2)	0.0579 (11)
X23	-0.0292 (3)	0.6745 (2)	0.4765 (2)	0.0795 (12)
C2	-0.2042 (17)	0.7106 (8)	0.3891 (11)	0.056 (4)
C21	-0.5509 (16)	0.5627 (8)	0.3728 (13)	0.048 (4)
C22	-0.5674 (17)	0.5021 (8)	0.2981 (12)	0.059 (5)
C23	-0.6814 (18)	0.4530 (9)	0.2933 (14)	0.060 (5)
C24	-0.7775 (19)	0.4617 (9)	0.3592 (14)	0.059 (5)
C25	-0.7681 (17)	0.5221 (10)	0.4321 (12)	0.060 (5)
C26	-0.6560 (17)	0.5715 (9)	0.4368 (11)	0.050 (4)

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{Cl1}$	$2.048(15)$	$\mathrm{Hg} 2-\mathrm{C} 21$	$2.046(14)$
$\mathrm{Hg} 1-\mathrm{C} 1$	$2.136(15)$	$\mathrm{Hg} 2-\mathrm{C} 2$	$2.12(2)$
$X 11-\mathrm{C} 1$	$1.820(13)$	$X 21-\mathrm{C} 2$	$1.808(14)$
$X 12-\mathrm{C} 1$	$1.890(15)$	$X 22-\mathrm{C} 2$	$1.855(15)$
$X 13-\mathrm{C} 1$	$1.849(14)$	$X 23-\mathrm{C} 2$	$1.878(14)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.34(2)$	$\mathrm{C} 21-\mathrm{C} 26$	$1.39(2)$
$\mathrm{C} 11-\mathrm{C} 16$	$1.38(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.39(2)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.37(2)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.38(2)$

$\mathrm{C} 13-\mathrm{C} 14$	$1.40(2)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.34(2)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.35(2)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.38(2)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.38(2)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.36(2)$
$\mathrm{C} 11-\mathrm{Hg} 1-\mathrm{C} 1$	$178.3(6)$	$\mathrm{C} 21-\mathrm{Hg} 2-\mathrm{C} 2$	$179.5(6)$
$X 11-\mathrm{C} 1-\mathrm{X} 13$	$107.5(7)$	$X 21-\mathrm{C} 2-\mathrm{X} 22$	$107.8(7)$
$X 11-\mathrm{C} 1-\mathrm{X} 12$	$105.3(8)$	$X 21-\mathrm{C} 2-\mathrm{X} 23$	$106.0(7)$
$X 13-\mathrm{C} 1-\mathrm{X} 12$	$107.8(7)$	$X 22-\mathrm{C} 2-\mathrm{X} 23$	$108.3(8)$
$X 11-\mathrm{C} 1-\mathrm{Hg} 1$	$111.8(7)$	$X 21-\mathrm{C} 2-\mathrm{Hg} 2$	$110.3(8)$
$X 13-\mathrm{Cl}-\mathrm{Hg} 1$	$109.7(7)$	$X 22-\mathrm{C} 2-\mathrm{Hg} 2$	$110.6(6)$
$X 12-\mathrm{C} 1-\mathrm{Hg} 1$	$114.4(6)$	$X 23-\mathrm{C} 2-\mathrm{Hg} 2$	$113.7(7)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16$	$117.9(15)$	$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22$	$117.1(14)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{Hg} 1$	$120.2(12)$	$\mathrm{C} 26-\mathrm{C} 21-\mathrm{Hg} 2$	$122.9(12)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{Hg} 1$	$121.9(12)$	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{Hg} 2$	$120.0(12)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$121.4(16)$	$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$119.8(16)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$120.9(17)$	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	$121.5(16)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$117.5(16)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$120.8(16)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.6(16)$	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	$118.1(16)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$121.6(15)$	$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$122.7(15)$

During the structure refinement, it was found that the Cl and Br atoms were distributed over the halogen-atom positions of each molecule. This disorder problem was modeled by creating a composite atom of Cl and Br . The Br population was refined so that its total contribution for all three sites on each methyl group summed to 1 . The Cl population at each site was then set equal to one minus the Br population. The refinement converged with the Br atoms showing an unsymmetrical distribution. For the methyl group centered at Cl , the bromine populations at $X 11, X 12$ and $X 13$ were 0.21 , 0.49 and 0.30 , respectively, while the corresponding values for $X 21, X 22$ and $X 23$ were $0.18,0.35$ and 0.47 , respectively. The chemical composition was verified by mass spectrometry. The parent ion displayed an isotopic distribution that agreed with that calculated for the formula $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrCl}_{2} \mathrm{Hg}$. Because of this disorder problem, the composite halogen atoms are represented by the symbol X in the tables.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: SHELXTL/PC (Sheldrick, 1990b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC.

KHW and WEB wish to thank the Robert A. Welch Foundation for financial support of this work. REB would like to thank the National Science Foundation for a Predoctoral Fellowship.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: MD1001). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bassetti, M. \& Bocelli, G. (1990). J. Chem. Soc. Chem. Commun. pp. 257-259.
Beauchamp, A. L., Olivier, M. J., Wuest, J. D. \& Zcharie, B. (1986). J. Am. Chem. Soc. 108, 73-77.

Brown, D. S., Massey, A. G. \& Wickens, D. A. (1980). J. Organomet. Chem. 194, 131-135.
Halfpenny, J., Small, R. W. H. \& Thorpe, F. G. (1978). Acta Cryst. B34, 3077-3079.
Huheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 258-259. New York: Harper \& Row.

Korpar-Colig, B., Popovic, Z., Bruvo, M. \& Vickovic, I. (1988). Inorg. Chem. Acta, 150, 113-118.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Seyferth, D., Jula, T. F., Hadwig, D. \& Pereyre, M. (1967). J. Organomet. Chem. 11, 63-76.
Seyferth, D. \& Lambert, R. L. Jr (1969). J. Organomet. Chem. 16, 21-26.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC Users Manual. Seimens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttigen, Germany.

Acta Cryst. (1995). C51, 2035-2037

Di(aqua)bis[(η^{5}-cyclopentadienyl)tris-(dimethylphosphito-P) cobalt- $\left.O, O^{\prime}, O^{\prime \prime}\right]$ lanthanum(III) Chloride

Iee Yeung Cho, Hwan Jin Yeo* and
Jong Hwa Jeong*
Department of Chemistry, Kyungpook National University, Taegu 702-701, Korea
Choong Eul Song
Organic Chemistry Laboratory III, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, Korea

(Received 6 July 1994; accepted 10 January 1995)

Abstract

The La atom in the title compound, diaqua- $1 \kappa^{2} O$ bis $\left[2,3\left(\eta^{5}\right)\right.$-cyclopentadienyl $]$ hexakis (μ-dimethyl phos-phito)- $1 \kappa^{3} O: 2 \kappa^{3} P ; 1 \kappa^{3} O: 3 \kappa^{3} P$-dicobaltlanthanum chloride, $\left[\mathrm{Co}_{2} \mathrm{La}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{P}\right)_{6}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}$, is eightcoordinate The coordination polyhedron around the La atom is nearly a square antiprism, consisting of eight O atoms contributed by two tripodal Co-complex ligands and two water molecules.

Comment

Transition metal complexes containing the O -donor tripodal ligands $L_{\mathrm{OR}}\left\{L_{\mathrm{OR}}=\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left[\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right]_{3}\right.$, $\left.R=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right\}$ have been studied widely (Klaui, 1990). Cyclopentadienyl(aqua)-metal complexes of the type $\left[\mathrm{CpM}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{2+}(M=\mathrm{Cr}, \mathrm{Co}, \mathrm{Rh}, \mathrm{Ru})$ have been characterized (Spreer \& Shar, 1981; Kolle \& Fuss, 1984; Kolle \& Klaui, 1991). We report here the crystal
structure of the title compound, (I). To our knowledge this structure is the first characterized of an aqua complex of an early lanthanide metal with such a tripodal ligand.

(I)

The coordination polyhedron around the La atom is nearly a square antiprism, consisting of $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$, O4, O 5 and O 6 contributed by two tripodal groups, and OW and OW 2 from two water molecules. One square face ($03,04, O W 2, O 5$) is nearly planar with no atom displaced by more than 0.044 (5) A from its mean plane; another ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{OW}, \mathrm{O} 6$) is almost planar, within 0.115 (5) \AA of its mean plane [folded quadrilateral angle about $\mathrm{O} 2 \cdots \mathrm{O} 6168(1)^{\circ}$]. The La atom is displaced from the plane of O3, O4, OW2 and O5 by 1.327 (2) \AA. The angles of the square corners in the square faces are in the range $85.9(1)-90.0(2)^{\circ}$ and the lengths of the square edges range from 2.843 (6) to 3.147 (6) \AA. The twist angle of the square planes is $45(3)^{\circ}$, which is the mean rotational angle of a square plane from eclipsed square planes (Wilson, 1992).

The average distance (Wilson, 1992) from the La atom to tripodal O atoms is 2.48 (2) \AA, which is similar to the distance from the La atom to the phosphine oxide $[2.422(12)$ or $2.456(11) \AA$] in $\left[\mathrm{La}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right\}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ (Pinkerton \& Schwarzenbach, 1977). The distances $\mathrm{La}-\mathrm{OW} 1$ and $\mathrm{La}-\mathrm{OW} 2$ are 2.651 (5) and 2.619 (5) \AA, respectively, which are longer than the $\mathrm{La}-\mathrm{O}$ (water) distances in $\mathrm{La}\left(\mathrm{OH}_{2}\right)_{6}\left(\mathrm{ClO}_{4}\right)_{3}$ (2.48 (3) \AA; Glaser \& Johansson, 1981), and similar to those in $\mathrm{La}(\mathrm{acac})_{3}\left(\mathrm{OH}_{2}\right)_{2}(2.56,2.58 \AA$; Phillips, Sands \& Wagner, 1968). Hydrogen bonding occurs between the Cl ion and H atoms of the coordinated water molecules $[\mathrm{Cl} \cdots \mathrm{H} 1 W(1-x, 1 / 2+y, 3 / 2-z)$ 2.20, $\mathrm{Cl} \cdots \mathrm{H} 4 W(1-x, y+1 / 2,3 / 2-z) 2.14 \AA$]. The bond distances between P and O atoms attached to the La atom [average $\mathrm{P}-\mathrm{O} \quad 1.49(1) \AA$] are shorter than the bond distances between P and O atoms attached to the methyl group [average $\mathrm{P}-\mathrm{O} 1.59$ (3) \AA]. These distances are slightly longer than the average $\mathrm{P}=\mathrm{O}$ distance, 1.46 (5) \AA (Corbridge, 1992), in a variety of tetrahedral phosphate compounds, and lie in the range between $\mathrm{P}-\mathrm{O}$ single and double bonds (Wilson, 1992). These values are similar to those in $\left[\mathrm{CpCo}\left\{\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{2}\right\}_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Towle, Landon, Brill \& Tulip, 1982).

